## COT 6405 Introduction to Theory of Algorithms

## Topic 6. Heapsort

## Heaps

- A heap is a complete binary tree or a nearly complete binary tree;



## Merge Sort v.s. Insertion Sort

- The number of comparisons in merge sort $-\Theta(n \operatorname{lgn})$
- The number of comparisons in insertion sort $-\Theta\left(n^{2}\right)$
- Merge sort requires the allocation of new memory to complete the "Merge" procedure
- Insertion sort is in place
- No need to request additional space


## Heaps (cont'd)

- A nearly complete binary trees; We can think of unfilled leaves as null pointers



## Heaps (cont'd)

- Not a heap



## Max-heap



Min-heap


## The implementation of heap

- Heaps are usually implemented as arrays (element index starts from 1)
- A max-heap example

16


## Cont'd

- To represent a complete binary tree as an array:
- The root node is $\mathrm{A}[1]$
- Node $i$ is $\mathrm{A}[i]$
- The left child of node $i$ is $A[2 i$ ]
- The right child of node $i$ is $\mathrm{A}[2 i+1]$
- The parent of node $i$ is $A[$ Li/2」]



## Referencing heap elements

- So, we have Parent(i) \{ return Li/2」; \} Left(i) \{ return 2*i; \} right(i) \{ return 2*i + 1; \}


## Bit shift operations

- We can use bit shift operations to improve the efficiency
- 2 * $\boldsymbol{i}$ - $>$ left shift $i$ by 1 bit
- E.g., (2*11 = 22) $00001011 \ll 1=00010110$
- $\lfloor i / 2\rfloor->$ right shift $i$ by 1 bit
-E.g., ([3 / 2] = 1) $00000011 \gg 1=000000001$


## Summary of heaps

- A heap is a complete binary tree or a nearly complete binary tree
- A heap can be represented as an array A
- Root is $A[1]$
- Parent of $\mathrm{A}[\mathrm{i}]$ is $\mathrm{A}[\lfloor i / 2\rfloor]$
- Left child of $A[i]$ is $A[2 * i]$
- Right child of $A[i]$ is $A[2 * i+1]$
- Bit manipulations can be used to improve the efficiency


## Heap height

- Height of a node
- Number of edges on a longest simple path from the node down to a leaf.
- Height of a tree = height of the root
- Height of a heap
- Height of the root $=\lg n$
- why?


## Heap height (cont'd)

- Show a heap with $n$ nodes has a height of $\Theta(\lg n)$


$$
\mathrm{n}=2^{0}+2^{1}+\cdots+2^{h}=\sum_{i=0}^{h} 2^{i}=2^{h+1}-1
$$

$$
\Leftrightarrow h=\lg (n+1)-1=\Theta(\lg n)
$$

Assume a complete binary tree

## Heap height (cont'd)

- What if the heap is not a complete binary tree?

$4 \mathrm{~h}=2,2^{0}$

$$
\begin{aligned}
& \mathrm{n} \leq 2^{0}+2^{1}+\cdots+2^{h}=\sum_{i=0}^{h} 2^{i}=2^{h+1}-1 \\
& \Leftrightarrow h \geq \lg (n+1)-1=\Theta(\lg n) \quad h \in \Omega(\operatorname{lgn}) \\
& \mathrm{n} \geq 2^{0}+2^{1}+\cdots+2^{h-1}=\sum_{i=0}^{h-1} 2^{i}=2^{h}-1 \\
& \Leftrightarrow h \leq \lg (n+1)=\Theta(\lg n) \quad h \in O(\operatorname{lgn})
\end{aligned}
$$

## Exercise

- Suppose you are given the following data structure to represent a binary Tree
Struct BinaryTree\{
int data;
*BinaryTree left;
*BinaryTree right;
\}
- Write a function in C to return the height of a binary tree. You may declare your function like this
- int maxHeight(BinaryTree *p)


## Exercise (cont'd)

- Write a function in C to compute the height of a binary tree

$$
h(\text { root })=1+\max (h(\text { left }), h(\text { right }))
$$

2 int maxHeight(BinaryTree *p) \{ if (!p) return 0 ; int left_height = maxHeight(p->left); int right_height = maxHeight(p->right); return (left_height > right_height) ? left_height +1 : right_height +1 ; \}

## The property of a heap

- Heaps must satisfy the heap property
- Max-heap:
$-A[$ parent $(i)] \geq A[i]$ for all nodes $i>1$
- In other words, the value of a node is at most the value of its parent
- Where is the largest element in a max-heap stored?


## The property of a heap (cont'd)

- Min-heap:
$-\mathrm{A}[$ parent $(\mathrm{i})] \leq \mathrm{A}[\mathrm{i}]$ for all nodes $\mathrm{i}>1$
- In other words, the value of a node is at least the value of its parent
- Where is the smallest element in a min-heap stored?
- In this course, we focus our discussions on max-heap


## Maintaining the heap property

- How?
- We use HEAPIFY to maintain the property
- Before HEAPIFY, A[i] may violate the property
- After HEAPIFY, the property is restored at $A[i]$.


## Heap Operations: MAX-Heapify()

- Given a node $i$ in the heap
- with children I and $r$.
- two subtrees rooted at I and $r$
- Problem: The subtree rooted at $i$ may violate the heap property
- Action: let the value of the parent node "float down"


## MAX-Heapify () (cont’d)



## MAX-Heapify () (cont'd)

```
Max_Heapify(A, i)
{
    l = Left(i); r = Right(i);
    if (l <= A.heap_size && A[l] > A[i])
        largest = l;
    else
        largest = i;
    if (r <= A.heap_size && A[r] > A[largest])
        largest = r;
    if (largest != i)
    Swap(A, i, largest);
    Max_Heapify(A, largest);//why this works?
```

\}

## How MAX-HEAPIFY works

- heap-size is the current heap size
- Compare $A[i], A[L E F T(i)]$, and $A[R I G H T(i)]$.
- If necessary, swap $A[i]$ with the larger of the two children to preserve heap property.
- Continue this process of comparing and swapping down the heap.
- If we hit a leaf, then the subtree rooted at the leaf is trivially a max-heap.


## MAX-HEAPIFY example



## Swap function

void Swap (A, i, j)
\{

$$
\begin{aligned}
& \text { int } \mathrm{t}=0 ; \\
& \mathrm{t}=\mathrm{A}[\mathrm{i}] ; \\
& \mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{j}] ; \\
& \mathrm{A}[\mathrm{j}]=\mathrm{t} ;
\end{aligned}
$$

$$
\text { \} }
$$

## Swap function (cont'd)

- Swapping without using extra variable
- Bit operation: exclusive or
- void Swap (A, i, j)

$$
\begin{aligned}
& \mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{i}]^{\wedge} \mathrm{A}[\mathrm{j}] ; \\
& \mathrm{A}[\mathrm{j}]=\mathrm{A}[\mathrm{j}]^{\wedge} \mathrm{A}[\mathrm{i}] ; \\
& \mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{i}]^{\wedge} \mathrm{A}[\mathrm{j}] ;
\end{aligned}
$$

\}

## Analyzing MAX-HEAPIFY

- What is the maximum possible size of a subtree?



## Analyzing MAX-HEAPIFY (cont’d)

- For a heap with $n$ nodes, a subtree has the maximum size when
- Its root is the left child of the root of the heap
- and It is a complete binary tree
- and the subtree rooted at the right child lacks the bottom level
- and the bottom level of the entire tree is exactly half full


## Analyzing MAX-HEAPIFY (cont'd)

- For a heap of $\mathbf{n}$ nodes and height $\mathbf{x}$, suppose the left tree has the maximum size
- The size of the left tree is

$$
2^{0}+2^{1}+\cdots+2^{x-1}=\sum_{i=0}^{x-1} 2^{i}=2^{x}-1
$$

- The size of the right tree is

$$
2^{0}+2^{1}+\cdots+2^{x-2}=\sum_{i=0}^{x-2} 2^{i}=2^{x-1}-1
$$

- The size of the entire tree is (size of the left tree) + (size of the right tree) +1

$$
\left(2^{x}-1\right)+\left(2^{x-1}-1\right)+1=n
$$

## Analyzing MAX-HEAPIFY (cont'd)

- Size of the entire tree

$$
\left(2^{x}-1\right)+\left(2^{x-1}-1\right)+1=n \Rightarrow 2^{x}=\frac{2}{3}(n+1)
$$

- The size of the left tree is

$$
2^{x}-1=\frac{2(n+1)}{3}-1=\frac{2 n}{3}-\frac{1}{3} \approx \frac{2 n}{3}
$$

## Analyzing MAX-HEAPIFY (cont'd)

- Fixing up relationships between $i, l$, and $r$ takes $\Theta(1)$ time
- The subtree at / has at most $2 n / 3$ nodes (worst case: bottom row 1/2 full)
- So time taken by MAX-Heapify() is given by
- $\quad T(n) \leq T(2 n / 3)+\Theta(1)$
- By using master theorem (case 2), we have
- $\quad T(n)=O(\lg n)$


## Exercise

- Prove the elements in the subarray $\mathrm{A}[\lfloor n / 2]+$ $1 . . . n]$ are all leaves of the heap tree


Leaves of the heap tree

## Proof

- With the array representation for storing an $n$ element heap, $\mathrm{A}[\lfloor n / 2\rfloor+1 . . \mathrm{n}]$ are leaves of the heap tree. Why?
- Otherwise the indices of the left children of these nodes are larger than $2^{*}\lfloor n / 2\rfloor+2$, which lies outside the boundary of the heap.


## Proof (cont'd)

- Also, $\mathrm{A}[[n / 2]]$ cannot be a leaf node, because the array has $n$ elements and the last element $\mathrm{A}[\mathrm{n}]$ must have a parent.
- Hence there are exactly [ $n / 2$ 〕 non-leaf nodes and therefore the leaves are indexed by $\lfloor\mathrm{n} / 2$ 〕 $+1,\lfloor n / 2\rfloor+2, \ldots, n$.

